🖥️
Offensive security concepts
  • Introduction
  • 💿Virtualbox network setup
    • What is VirtualBox?
    • NAT
    • NAT network
    • Bridged adapter
    • Internal network
    • pfSense
    • vboxmanage
    • Overview
  • 🕵️OSINT
    • What is OSINT?
    • Google dorks
    • Metadata
    • Social media
      • osintagram
  • Tools
    • waybackurls
    • recon-ng
    • sherlock
    • maltego
    • theHarvester
    • photon
  • 😨Social Engineering
    • What is social engineering?
    • 7 tricks of social engineering
    • Email phishing
    • Typosquatting
    • Compiled resources
  • 😈MitM attack
    • What is MitM attack?
    • ARP spoof/poison
    • DNS spoof/poison
    • HTTP MitM attack
    • ICMP redirect attack
    • DHCP spoofing
    • Evil twin attack
    • Experiment (guest network)
    • Compiled resources
  • 🔌UPnP exploitation
    • What is UPnP?
    • What is SSDP?
    • IGD functions
    • LAN devices
    • Compiled resources
  • Network Reconnaissance & Attacks
    • What is network recon & attacks?
  • 1️⃣Network live host discovery
    • What is network live host discovery?
    • nmap
    • arp-scan
    • masscan
  • 2️⃣Network port scan/services enumeration
    • What is network port scan/services enumeration?
    • nmap
    • netcat
  • 3️⃣Network services vulnerability scanning & exploitation
    • What is network vulnerability scanning/exploitation?
    • 20/21 ~ FTP
    • 22 ~ SSH
    • 25 ~ SMTP
    • 53 ~ DNS
    • 80/443 ~ HTTP/HTTPS
    • 110 ~ POP3
    • 111/2049 ~ RPC/NFS
    • 139/445 ~ SMB
    • 143 ~ IMAP
    • 3389 ~ RDP
  • Vulnerability & exploitation
    • Database
    • Metasploit
    • Msfvenom
  • Misconfigurations
    • .DS_Store
  • Web Application Penetration Testing
    • Introduction
    • Web Content Discovery
      • Directories/URLs gathering
      • Subdomain enumeration
    • File inclusion & Path traversal
    • Insecure Direct Object Reference (IDOR)
    • Upload vulnerabilities
      • File extension cheat-sheet
    • SSRF
    • CSRF
    • XSS
    • SSTI
    • SQL injection
      • Filter evasion techniques
      • Practical challenge examples
        • TryHackMe
          • TryHackMe Burp suite: Repeater room
          • TryHackMe Advanced SQL Injection
  • Authentication/session management
    • OWASP WSTG-SESS-10 ~ JSON Web Token (JWT)
    • OWASP WSTG-ATHZ-05 ~ OAuth weaknesses
  • Webshell
  • Web API pentesting
    • Resources
    • Methodology
    • jq
    • httpx
    • ParamSpider
  • Web app pentesting methodology
  • OWASP
    • OWASP top 10
    • OWASP API top 10
    • Web Security Testing Guide (WSTG)
      • WSTG-ATHZ
        • WSTG-ATHZ-05 ~ OAuth weaknesses
      • WSTG-SESS
        • WSTG-SESS-10 ~ JWT
  • General web knowledge
    • URI standard (RFC 3986)
    • HTTP headers
  • 🛣️Attacks on routing protocols
    • What are attacks on routing protocols?
    • BGP hijacking
  • 🏕️To explore
    • MQTT
    • Routersploit
    • DNS rebinding attack
    • LLMNR/mDNS poisoning
  • 👤Anonymity
    • VPN
    • Proxychains
    • TOR
    • Obfuscation
  • Credentials brute-force/cracking
    • Introduction
    • Windows SAM database
    • Dictionary attack
    • Rainbow attack
      • Hash database
    • Tools
      • Hydra
      • John the ripper
      • Hashcat
      • hash-identifier
  • Post-exploitation
    • Gaining shell
      • netcat
      • socat
      • powershell
      • bash
      • PHP
    • Repository
  • Privilege escalation
    • Linux
      • Repositories
      • Enumeration
      • Vulnerabilities exploit
        • General
        • Kernel exploit
        • Sudo
        • SUID
        • Capabilities
        • Cronjobs
        • $PATH
        • NFS (target-machine)
        • Filesystem sharing
          • NFS (attacker-machine)
    • Windows
      • Password harvesting
      • Vulnerabilities exploit
        • Scheduled tasks
        • AlwaysInstallElevated
        • Service misconfigurations
          • Insecure permissions on service executable
          • Unquoted service path
          • Insecure service permission
        • Abusing privileges
  • Ⓜ️MITRE ATT&CK
    • Introduction
  • 🧰Tools/services
    • Introduction
    • Web application pentesting
      • Web discovery/fuzzing
        • paramspider
        • arjun
        • katana
      • uro
      • Password brute-forcing
      • Burp Suite (Community)
      • scanners
        • ZAP (Zed Attack Proxy)
        • nikto
        • nuclei
    • Information gathering/reconnaissance
    • Network recon & attacks
      • nmap (general overview)
      • scapy
      • bettercap
    • General
      • impacket
    • Wordlists
      • cewl
  • Professional report writing
    • Report template
      • Web applicaton pentesting
        • OWASP report layout
  • Tasks on-the-go
    • Note taking on-the-go
    • Other tips
  • Practice
    • Web Application Pentesting
      • OWASP
        • OWASP Juice Shop
        • OWASP Mutillidae II
        • OWASP Hackademic
      • Vulnhub
        • ...
      • Damn Vulnerable Web Application (DVWA)
    • Metasploitable 2
  • Operational Security (OpSec)
    • Hardening
      • General
      • Oracle VirtualBox
      • Web Browser
      • VPN/Proxy
  • Safe document viewer
    • PDF
    • .docx
  • Write-ups
    • TryHackMe
      • Silver Platter
      • Light
      • Pickle Rick
      • Hammer
        • Enumeration (active recon)
          • /hmr
          • Further directory discovery
          • /phpmyadmin
          • burp suite sitemap
        • Brute forcing 4-digit code
        • Retrieving the flag
      • OWASP Top 10 - 2021 (task 22)
      • sqlmap
    • OverTheWire
      • Untitled
    • OWASP
      • OWASP Juice Shop
      • OWASP WebGoat
  • AI prompt
    • ChatGPT
Powered by GitBook
On this page
  1. MitM attack

Experiment (guest network)

Some guest networks may have a security setting which prevents hosts on the network from communicating with each other. This effectively prevents the basic forms of MitM attacks such as direct ARP/DNS spoofing of other hosts, etc.

Let's assume the following:

  1. Router have host isolation feature, but does not have built-in ARP spoofing prevention mechanisms for itself

  2. The packet exchanged between the target host and remote server are not encrypted

I am experimenting with a method which involves the following steps (not tested, just theorized only):

  1. ARP spoof packet to the router to trick it in thinking that attacker machine's MAC address is that of the target host

  • All packets destined for the target host would come to the attacker (note that packets coming from the target are not spoofed)

  1. Leaving as it is from step 1, denial-of-service would happen for the target. To continue with the attack to allow a MitM position, have a remote-controlled host on the internet to spoof the return packet that the target host is expecting

  • This packet's destination MAC address would contain the actual address of the target host

  • The usual pattern is that the router would check that the destination MAC address is itself, before going on to resolve the IP address - will this trick the router to not ARP resolve the IP address and directly sent it to the destination MAC address instead?

-> potentially, but most likely NOT since the packet is coming from the WAN side of the router

  • the goal is to have the router to directly send the packet to the target host, bypassing the need for ARP table lookup (which will return the MAC address of the attacker instead)

  1. If this is successful, a MitM position is established, bypassing the host isolation feature

PreviousEvil twin attackNextCompiled resources

Last updated 3 months ago

😈